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Many mobile applications such as Strava or Mapmyride allow cyclists to collect detailed GPS traces of their trips for health 
or route sharing purposes. However, cycling GPS traces also have a lot of potential from an urban planning perspective. In 
this paper, we focus on two important issues to characterize urban cyclist behavior: trip purpose and route choice. Cycling 
trip purpose has been typically analyzed using survey data. Here, we present a method to automatically infer the purpose of 
a cycling trip using cyclists’ personal data, GPS traces and a variety of built-in and social environment features extracted 
from open datasets characterizing the streets cycled. We evaluate the proposed method using GPS traces from over 7, 000 
cycling routes in the city of Philadelphia and report F1 scores of up to 86% when four trip purposes are considered. On the 
other hand, we also present a novel statistical method to identify the role that certain variables characterizing the built-in and 
social environment play in the selection of a specifc cycling route. Our results show that cyclists in Philadelphia tend to favor 
routes with green areas, safety and centrality. 

CCS Concepts: • Human-centered computing → Empirical studies in ubiquitous and mobile computing; • Com-
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1 INTRODUCTION 
There exists a plethora of mobile applications that allow cyclists to collect detailed GPS traces of their trips such 
as Strava, Mapmyride, Cyclemeter or MyTracks [22, 44, 49, 65]. Cyclists typically collect such traces either for 
health purposes, to track the amount of exercise done by an individual; or for informational purposes, to share 
cycling experiences with other fellow cyclists willing to explore new routes. However, cycling GPS traces also 
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have a lot of potential from an urban planning perspective so as to help cities better understand the ways in 
which cyclists use the streets on a daily basis. Furthermore, given the large growth in the number of citizens 
cycling for commuting and non-commuting purposes, understanding cycling behavior becomes highly critical 
for cities willing to improve the urban infrastructure so as to maximize cyclist satisfaction [31, 43, 47, 72]. 

In this paper, we focus on two important issues characterizing urban cyclist behavior: trip purpose and route 
choice. Trip purpose refers to the classifcation of cycling trips by its main objective e.g., commuting, exercise or 
shopping, among others. Understanding trip purpose allows decision makers to identify diferent urban areas as 
major hubs for specifc purposes and to develop appropriate infrastructure accordingly. For example, if an urban 
area mostly sees commuting trips, urban planners could focus on providing long-term, secure bicycle parking 
options to commuters; while if another region is mostly visited by cyclists exercising, it might be relevant to 
provide dedicated bike lanes, rather than lanes shared with trafc, so as to allow citizens to relax and enjoy their 
exercise routines. Urban planners have typically analyzed cycling trip purposes through expensive surveys which, 
as a result, are only run every certain number of years. Although GPS traces have been used to automatically 
infer car trip purpose [24], there are no solutions for cycling trip purpose inference, which can be much more 
challenging due to the less constrained nature of these trips as cyclists enjoy much more freedom than vehicles in 
their route choices. In fact, cyclists can often times choose to cycle through bike-only park trails instead of roads; 
they can also use contra-fow lanes, which allow cyclists to travel both with and against the trafc fow [56]; they 
can decide to walk their bikes on the sidewalk or across bridges while moving against the trafc fow [10]; or 
even cycle in the wrong direction, which is not legal, but happens with certain frequency [9]. This plethora of 
route choices makes the cycling trip purpose inference much more challenging. In this paper, we explore the 
applicability of existing car trip purpose prediction techniques to cycling, explore its limitations, and propose a 
novel approach that improves existing solutions by combining XGBoost with features characterizing the built-in 
and social environment where the trip takes place, cyclists’ personal data and trip information extracted from 
the GPS traces collected via cycling tracking tools. Since the main objective is to provide afordable inference 
methods that cities and urban planners can run with high frequency, we propose to use contextual information 
about the environment exclusively extracted from open datasets such as open data city portals or Open Street 
Maps. 
Route choice, on the other hand, refers to understanding the role that certain variables characterizing the 

built-in and social environment play in the selection of a specifc cycling route. For example, cyclists might 
generally prefer streets with bike lanes or no slope; or might express a preference for streets in green areas when 
they are exercising. Understanding route choice alone, or in combination with trip purpose would help urban 
planners in the identifcation of potential improvements to the urban bicycle infrastructure. Route choice has 
been largely studied by researchers in transportation analysis [6]. The common approach is to generate the 
choice set of routes that cyclists can possibly take, and to compare these against the actual routes cycled so as 
to identify the route features that are favored by cyclists. Since it is not trivial to generate all possible routes, 
specially given the fact that cyclists enjoy much more freedom than drivers in their choices, choice set generation 
algorithms typically select the subsets of all the possible routes that make more sense, using diferent types 
of cyclist behavioral assumptions and hypotheses. For example, some scholars create the choice set assuming 
that cyclists always prefer the shortest or fastest routes [5], while others accept that cyclists will always choose 
routes with the lowest trafc [3]. Although partially correct, none of the behavioral assumptions represent all the 
decisions behind route choice in cyclists. In fact, related work has shown that diferent route choice set generation 
algorithms directly afect the behavioral fndings observed, reaching sometimes contradictory conclusions [3]. 
To address this issue, we propose a novel method that uses Google’s cycling directions to generate the route 

choice set; followed by statistical methods to analyze the similarities and diferences between the actual GPS-
recorded routes by cyclists and Google’s suggested routes. Our main hypothesis is based on the fact that Google’s 
cycling directions uses a mash-up of data including publicly available bike maps as well as user-generated routes 
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from cyclists worldwide, which implicitly incorporate information about cyclists route choices i.e., there are no 
assumptions made as of the types of routes chosen, but rather, these represent actual routes taken by cyclists 
with certain frequency [26, 33]. The statistical methods we propose will use built-in and social environment 
features extracted from open datasets, rather than from proprietary data as traditionally done in the feld of 
transportation analysis, making route choice analyses more accessible to cities with low resources. 
This paper advances the state of the art along several directions: 
• The design of an automatic method to infer cycling trip purpose using cyclists’ personal data, cyclist-
generated GPS data and contextual information about the environment extracted, exclusively, from open 
datasets. 

• The design of a method to generate a route choice set without any cyclist behavioral assumption, and a 
statistical method to analyze route choice using open datasets. 

• The evaluation of these methods using a open dataset with over 7, 000 GPS traces from cyclists in Philadel-
phia collected using the Cycle Philly mobile application [19]. 

The rest of the paper is organized as follows. Section 2 covers related work. Sections 3 and 4 present a description 
and evaluation of the methods for trip purpose inference and route choice; Section 5 describes how the proposed 
methods could be embedded within a decision support tool for decision makers; and, fnally, sections 6 and 7 
cover the discussion and main conclusions. 

2 RELATED WORK 
2.1 Trip Purpose Inference 
There exists a lot of work focused on activity inference based on geolocated traces i.e., to identify whether a 
person is walking, cycling or running using traces collected via smartphones (GPS) [17, 25, 36]; or to extract 
travel/transportation mode i.e., whether a person is traveling by bus, train, car or bicycle using smartphone GPS 
data or cell phone CDR data [60, 69, 74]. However, work on trip purpose inference is mostly focused on car 
trips, not cycling. One of the seminal papers, by Wolf et al. [71], focused on trip purpose inference using GPS 
data collected from cars. The authors inferred trip purpose by manually building a database of land uses, places 
and trip purposes, and by manually identifying the exact characteristics of the destination location (address 
and land use) and assigning a trip purpose to it. Later work, explored more automatic inference approaches 
using GPS data collected from cars, and typically combined with information extracted from travel logs [32]. 
Generally, most inferences use two sets of features: spatio-temporal information of the destination, or origin, or 
both [15, 27, 41, 51, 62, 71]; or a combination of spatio-temporal information of destination and/or origin with 
personal information about the driver [24, 28, 29, 40, 46, 48]. The spatio-temporal information of the destination 
or the origin typically includes day and time of the trip, type of land use or POIs (points of interest) at the origin 
or destination, duration of the trip, or distance traveled; while personal information refers to demographic and 
socio-economic characteristics of the driver. On the other hand, three types of inference approaches have been 
used in the literature:rule-based methods that match the GPS information with a series of predefned heuristic 
rules to infer trip purpose [11, 54, 64, 71]; probabilistic methods that estimate the probability for each trip purpose 
and select as fnal the one with the highest value [2, 15]; or machine learning approaches that use classifcation, 
regression trees or discriminant analysis to predict the purpose of the trip [24, 46]. Nevertheless, to the best of 
our knowledge, there are no papers that focus on trip purpose inference for cycling, which can be much more 
challenging due to the less constrained nature of these trips as cyclists enjoy much more freedom than cars in 
their route choices: bike-only trails through urban parks, contra-fow lanes, walking the bike on sidewalks or 
bridges, or cycling against trafc. In this paper, we explore the applicability of existing car trip purpose prediction 
techniques to infer cycling trip purpose, explore its limitations, and extend the state of the art by developing an 
inference method to determine the purpose of a cycling trip given cyclists’ personal data, a set of GPS traces 
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collected via mobile applications and characteristics of the built-in and social environment - available via open 
datasets - throughout the cycling trip.Since we envision city halls and urban planners using these GPS traces, 
and to avoid privacy breaches, our approach works with trips whose origin and destination points have been 
obfuscated to the closest intersection. The inference method we propose will work with obfuscated traces rather 
than the fully disclosed origin-destination traces. 

2.2 Route Choice 
The generation of the choice set of cycling routes has been implemented using multiple approaches. The most 
straight forward approach is the use of K-shortest paths to minimize the generalized path costs [67]. However 
these algorithms assume implicitly cyclist awareness of all the link attributes, which is highly unrealistic. Ben-
Akiva et al. [4] proposed an approach that generated possible paths based on diferent optimal criteria that 
cyclists might pursue including shortest route, shortest travel time or lowest slope. Nevertheless, this approach 
assumes that travelers might have diferent objective functions, which has not been proved in the literature 
either. Simulation methods based on Monte Carlo approaches have also been proposed to take into account that 
travelers might erroneously perceive link attributes [12, 14]. Although all these assumptions and hypothesis are 
correct, they are never complete, since that is precisely the specifc route choice problem we are trying to solve. 
On the other hand, the comparison between cycled routes and the choice set has been carried out in the 

literature using a variety of discrete choice analysis methods including C-Logit [13], Path Size Logit [5], PCL 
model [18], CNL [68], GNL [70] or multinomial logit path (MLP) [23], all of which focus on the identifcation of 
specifc built-in or social environment features that are statistically signifcant from a route choice perspective. 
All these choice analysis methods assume the existence of distinct, separable and mutually exclusive alternatives, 
condition that does not hold when using routes from Google’s cycling directions which often times overlap 
with each other for certain subsets of streets. Additionally, they model cycling choices as individual decisions, 
without taking into account that cycling decisions might be infuenced by what other cyclists are doing on the 
road and by their route choices as well. Although corrective methods have been proposed [59], eliminating just 
the overlapping routes would heavily limit the amount of options available since Google’s cycling directions 
outputs up to three routes. To overcome all these limitations, we propose an approach that combines (a) Google’s 
cycling directions to extract a route choice set that incorporates a complete overview of diferent cyclist behaviors, 
choices and infuences, without the need to make any behavioral assumptions; and (b) a reproducible and simple 
statistical approach to analyze the role that the environment features play in cyclists’ route choice, when it is 
known that routes might heavily overlap with each other. 

3 TRIP PURPOSE INFERENCE 
In this section, we design and evaluate a method to infer the purpose of a cycling trip using cyclists’ personal 
data, features extracted from the trip’s GPS traces and characteristics of the built-in and social environment 
visited during the trip. We assume that the GPS traces are collected using one of the multiple existing cycling 
tracking tools that ask cyclists to provide personal information upon installation (such as cycling experience or 
demographic data) and that allow them to collect cycling traces from their trips [19, 61]. For evaluation purposes, 
we will use a dataset that additionally contains trip purpose information for each set of GPS traces, labeled as 
commuting, errand, exercise, school, shopping or social, among others. However, we aim to design a trip purpose 
inference method that will only require cyclists to share their GPS traces without the need to provide any trip 
purpose labels. Additionally, cycling tracking tools typically allow cyclists to defne certain privacy settings, 
including the creation of privacy zones which obfuscate the exact origin and destination points. In this paper, we 
focus on the design of a privacy-preserving trip purpose inference method which will not use the exact origin 
and destination locations, but rather their obfuscated representations defned as the closest road intersection 
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to the actual location. Although this approach makes trip inference more challenging, it provides a balanced 
solution between the collection of private cyclist data and its use by city planners for urban planning purposes. 

3.1 Baseline 
Previous work has already shown that the day and time of the trip as well as the type of land use at the destination 
can statistically diferentiate with high signifcance diferent car-based trip purposes [15, 41, 51, 71, 73].Thus, we 
defne a basic baseline (BS) that exclusively uses spatio-temporal information of the cycling trip including day, 
hour and month of the trip, its duration and the distance traveled, together with the points of interest (POI) at 
the obfuscated destination point to infer trip purpose. This information can be easily retrieved from the GPS 
traces collected, except for the POI, which we extract from Open Street Maps using the following 10 categories: 
residential, schools and universities, outdoors and recreation, retail shops, art, professional service, food, nightlife 
spots, cycling facilities and transportation facilities [34]. To retrieve the POI at the obfuscated destination points, 
which are defned as the closest road intersection to the actual location, we compute the number of POI per 
category present across all the streets involved in that intersection. On the other hand, other approaches that infer 
car trip purpose have successfully combined spatio-temporal origin and destination information with personal 
driver data [24, 40, 46, 48]. As a result, we will consider a second baseline that combines BS with personal data 
from the cyclist (BS + P ). 
Nevertheless, the two baselines described do not take into account information about the types of streets 

cycled during the trip. Given the route choice freedom that cyclists enjoy, we hypothesize that these features 
could be highly informative of the trip purpose.In fact, depending on the cyclist and/or the purpose of the trip, 
cyclists might choose routes with diferent built-in or social environment features. For example, an experienced 
cyclist might prefer a direct route without bike lanes when commuting to work, while a reluctant cyclist might 
favor secondary roads with bike lanes. Thus, we aim to design a trip purpose inference method that uses the 
spatio-temporal features and cyclists’ personal data described in the baselines as well as built-in and social 
environment features characterizing each street cycled, as predictors of the purpose of the trip. To achieve this 
goal, we propose four consecutive steps as shown in Figure 1 (top). First, we retrieve the streets associated to 
the collected GPS traces; second, we retrieve the built-in and social environment features that characterize each 
street cycled; third, we design a novel method that uses personal cyclist data, spatio-temporal information of the 
trip and street features to infer trip purpose; and fourth, we evaluate the method. Next, we describe each step in 
detail. 

3.2 Retrieving Street Segments 
Streets can be long and might traverse areas with largely diverse built-in and social environment features. To 
carry out a more granular characterization of the streets cycled, we propose to work with street segments instead, 
defned as the road between any two street intersections. Retrieving the street segments associated to the GPS 
traces of a cycling trip is not straightforward since GPS sensors have errors, and more so in urban environments 
where when surrounded by tall buildings the GPS might lose signal or record a location quite far away from the 
actual visited location. As a result, we retrieve the list of street segments cycled using Mapbox’s Map Matching 
API, which snaps fuzzy, inaccurate GPS traces to actual segments in the road network [42]. Internally, Mapbox 
uses the map-matching algorithm by Newson and Krumm, based on Hidden Markov Models (HMM) that fnd the 
most likely street segment in the network that is represented by the collected GPS location [50]. 

3.3 Street Segment Features 
Once each cycling route is represented as a set of street segments, we characterize each segment with a set of 
built-in and social environment features that we hypothesize could be predictive of the trip purpose. Since our 
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Fig. 1. Main components of the Trip Purpose Inference (top half figure) and Route Choice methods (bottom half figure)
proposed. Trip purpose is inferred using cyclist personal data and social and built-in environment features of the route. Route
choice is evaluated with Google Maps suggested routes and the same social and built-in features.

objective is to design afordable and accessible tools for city planners, all the proposed features can be typically
retrieved from open data portals or from Open Street Maps. While over 2600 cities worldwide ofer access to
open data portals with city information [52], Open Street Maps is available for over 4 million small- to mid-sized
cities [34], which guarantees the possibility to replicate these studies across other cities and countries.
We propose to use the following built-in environment features: (a) road network features of each street

segment including the average slope as well as the minimum and maximum segment’s slope (to account for
cases where the segment might have multiple peaks), computed using elevation data from several segment points
extracted using USGS free point query service; these features might refect how cyclists favor or avoid routes with
slopes depending on their trip purpose [66]; (b) graph-based characterization of the street segment in terms
of centrality measures that quantify the importance of the segment in the overall road network i.e., whether it is
a central segment that is typically cycled through to go between any two points in the city, or more of an outlier
segment, which could refect preference of direct or indirect routes depending on the purpose of the trip. We use
the SNAP package [38] and the road network extracted from Open Street Maps to evaluate various centrality
measures such as degree, betweenness or page rank, among others, considering the road network of the city both
as an undirected and directed graph (taking into account the direction of the trafc fow). Additionally, we will
evaluate both primal and dual road network approaches that consider either each segment as an edge and each
intersection as a node, or vice versa (Figure 2 shows an example) [57, 58]; (c) presence of bike facilities in the
street segment, extracted using Open Street Maps as well as open datasets from cities that provide the shapefles
for the bike lanes. These features might be favored by certain types of trip purposes e.g., cyclists exercising favor
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the safety provided by separated bike lanes; and (d) presence of diferent types of POI in the street segment, 
extracted from Open Street Maps, which could be indicative of trip purpose. 
On the other hand, we also work with social environment features that characterize human interactions 

with the built-in environment over time. These features, typically provided by cities through their open data 
portals, are time-stamped and geolocated. Specifcally, we propose to work with four types of features: (e) crime 
statistics which could play a role in route selection if cyclists consider a neighborhood to be more or less safe; 
(f) crash statistics per street segment, to characterize the cycling safety of a given street. Types of crashes 
reported in open datasets typically include collision with fxed car or hit and run, among others; (g) parking 
violations per street segment, under the assumption that the volume of violations might shape the perception 
of safety or convenience for a given street segment. These violations are classifed into diferent types such as 
parked car obstructing sidewalk or parked car obstructing driveway, among others; and fnally, (h) 311 requests, 
311 is a non-emergency service that people can use in many cities to make complaints or report problems like 
road damage; in this paper, we focus on requestsrelated to the built-in environment of a street segment such 
as volumes of curb or pothole repairs, which could be indicative of cycling safety and potentially play a role in 
trip purpose. Figure 3(a) shows the normalized distribution of all 311 requests in a small area of Philadelphia 
in 2015-16. As shown, 311 requests are not uniformly distributed, with certain street segments having higher 
volumes than others. 

To assess the role that the social features (crime, crash, parking and 311) might play in a cyclist’s choice of 
streets and on the inference of trip purpose, we explore two approaches: (i) short-term memory (SM) , which 
assumes that only the most recent events will shape a cyclist’s perception of street safety or route convenience, 
and (ii) long-term memory (LM), which considers that all events from the past might play a role in that perception. 
The former is computed as the average for the month when the trip took place, while the latter is computed using 
the monthly averages across all past available data up to the day when the trip took place (see Figure 3(b) for 
an example). These two approaches to feature calculation will also provide insights into the role that single or 
time-series representations of the social features play in the trip purpose inference. The evaluation in section 3.5 
will describe further details about short- and long-term memory features applied to a specifc dataset. 
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3.4 Inference Method 
Formally, given a set of m trips with cyclist-collected GPS data and their trip purpose labels, we frst characterize 
each trip as Ci = {SP , S, P}, where SP represents the spatio-temporal features of the trip (time, day, month,
duration, distance of the trip, and POI at the obfuscated destination point); S = {s1, ..., sn } represents the set 
of segments cycled in that trip; and P the set of personal features that characterize the individual who cycled 
that trip. Each segment si visited during the trip is characterized by its built-in and social environment features 
F = { f1, ..., fp }. Bear in mind that the number of segments n can be diferent across trips i.e., one cyclist might 
cycle through 30 segments while other can cover a much larger number, depending on the length of the trip and 
on the cyclist’s speed. With this representation, we frame the trip purpose inference as a classifcation problem 
where the set of trips #» and their trip purpose labels #»

C L are used to train and test various trip classifcation 
methods #» #»

L = M(C ) and to pinpoint to the most relevant features for the identifcation of a given trip purpose. 
We evaluate classifcation methods that have already been used for car trip purpose inference (although with 

fewer or diferent features) including logistic regression, SVM or Random Forest (RF) [24] using scikit-learn [53] 
and propose a novel method, based on XGBoost [16], that handles better large feature vectors like the ones we 
have in this setting. Logistic regression, RF and XGBoost require the number of features for each training and 
testing sample to be the same i.e., equal feature size. However, since trips can have diferent number of segments, 
the total number of features per sample will be n ∗ p where n might vary. To overcome this issue, we re-defne 
each trip Ci as a set of N segments where N is the total number of street segments in the city under study. Thus, 
a trip that goes through q diferent segments, will be represented as a vector of N street segments where only q
segments have non-zero values for the built-in and social environment features, while all others vector elements 
are zero. However, with this set up it would be impossible to diferentiate cycled segments whose features have 
all zero values from segments that have not been cycled. To disentangle this situation, we apply a smoothing 
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Table 1. Personal information collected by Cycle Philly App, including demographic: age, gender, ethnicity or income; and 
cycling experience information: cycling frequency, type of cyclist and cyclist history. Numbers in brackets indicate the total 
number of cyclists belonging to each category. 

Personal Features Subtypes 
Age ‘18 - 24’ (28), ‘25 - 34’ (121), ‘35 - 44’ (55), ‘45 - 54’ (19), ‘55 - 65’ (7), ‘>65’ (4) 

Gender ‘Male’ (162), ‘Female’ (71) 

Ethnicity ‘White’ (192), ‘Asian’ (9), ‘Hispanic/Mexican/Latino’ (3), 
‘African American’ (11), ‘Multi-racial’ (4), ‘Other’ (6) 

Income ‘< $20,000’ (17), ‘$20,000 – $39,999’ (30), ‘$40,000 – $59,999’ (44), 
‘$60,000 – $74,999’ (20), ‘$75,000 – $99,999’ (33), ‘> $100,000’ (53) 

Cycling frequency ‘Less than once a month’ (22), ‘Several times per month’ (53), 
‘Several times per week’ (116), ‘Daily’ (35) 

Cyclist Type ‘Interested, but concerned’ (5), ‘Comfortable, but cautious’ (71), 
‘Enthused & Confdent’ (119), ‘Strong & Fearless’ (42) 

Cyclist History ‘Just trying it out/Just started’ (13), ‘One year or less’ (11), 
‘Several years’ (85), ‘Since childhood’ (128) 

parameter α = 0.5 to all the zero-valued features from segments that have been cycled, and leave the zero values 
for the non-cycled segments. All values are normalized using MaxAbsScaler which scales each feature by its 
maximum absolute value, preserving sparsity among the values. 

On the other hand, SVM requires equal feature size when using traditional linear or nonlinear kernels (polyno-
mial, GRB); but can handle diferent feature sizes when used with kernels adapted for time series analysis. In this 
paper, we evaluate linear- and GRB-based SVM as well as SVMs with a Global Alignment kernel (GAK), that 
computes the similarity of any two sequential distributions [8, 21]. Unlike Dynamic Time Warping (DTW) kernels, 
GAKs are faster to compute and do not require any type of correction on the Gram matrices to defne positive 
defnite kernels, which are required to compare time-series data [63]. Additionally, the SVM-GAK approach will 
also respect the order in which the segments were visited, which could potentially play a role in the identifcation 
of the trip purpose. Finally, we also evaluate the impact that class imbalance and spatial autocorrelation might 
have on the accuracy of the classifcation methods. 

3.5 Evaluation 
3.5.1 Datasets. We evaluate the proposed trip purpose classifcation methods using cyclist data from the City 

of Philadelphia. We focus on data collected by cyclists using the Cycle Philly App, an application developed by 
the city to allow cyclists record their cycling trips using their personal smartphones [19]. The mobile application 
was promoted by the city, as well as by regional authorities, encouraging cyclists to share their data for urban 
planning purposes. After the data collection period ended, the city gave open data access online [19]. 

Upon signing up, the Cycle Philly App asked cyclists to provide seven variables characterizing their demographic 
and cycling experience information. Specifcally, cyclists were asked for their age, gender, ethnicity, income, 
cycling frequency, cyclist type, and cyclist history (see Table 1 for details). Additionally, every time cyclists rode 
their bicycles, they were asked to provide their trip purpose by choosing between commute, social, exercise, 
errand, work-related, shopping, school or other. 

The data collection was started manually by the cyclists meaning that if they did not want a specifc personal 
trip to be recorded, they had the choice to do so. The cycling GPS traces were collected until the end of the 
1Images generated using GPS Visualizer. 
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(a) GPS traces for trips labeled as Commute (in cyan) and School (in 
dark blue) 

(b) GPS traces for trips labeled as Social (in red) and Exercise (in blue) 

1Fig. 4. Example of cycling trips collected with Cycle Philly App. Labels were provided by cyclists and trips were collected as 
GPS traces. 
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trip, and both origin and destination points were obfuscated to the closest intersection for privacy preserving 
purposes. The complete dataset was collected over a period of two years, from May 2014 to April 2016 and 

#»included |C | = 7, 367 trips made by 255 cyclists distributed as: 4, 472 commuting trips, 967 social trips, 470 errand 
trips, 414 work-related trips, 346 exercise trips, 296 trips labeled as other, 226 shopping trips, and 176 school trips. 
After computing the street segments associated to each trip, the average number of segments per trip was 46. 
Figure 4 shows a map of Philadelphia with the GPS traces collected from four diferent types of trip purposes: 
commute, school, social and exercise. 

The GPS traces were used to compute the six spatio-temporal features for each trip; while the built-in and social 
environment features to characterize the street segments were extracted from several datasets in Philadelphia’s 
OpenDataPhilly website [55]; as well as from Open Street Maps. The built-in environment features per segment 
included three road network features (slope, minimum and maximum values); 23 graph-based features (diferent 
segment importance and centrality measures with primal and dual approaches); 10 POI features; and one bike 
lane feature. For each of the four social environment features, we collected all the events available during the 
same time range as the trip collection period i.e., between May 2014 and April 2016. We computed monthly 
averages per social feature using both the short- and long-term memory approaches. The fnal dataset used to 
train and test the trip purpose classifcation methods consists of 7, 367 trips with their purpose labels, where 
each trip is characterized by all spatio-temporal (|SP | = 6), personal (|P | = 7) and built-in and social environment 
features (|F | = 41). We will give open access to this fnal dataset for other researchers willing to continue this 
line of work. 
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Table 2. Trip purpose classification for eight trip purposes: commuting, social, exercise, errand, work-related, shopping, 
school or other. Results are reported as averaged micro-F1/Macro-F1 scores over ten random runs for each method and 
feature set. Nonlinear-SVM was run with RBF and C = 100 and Gamma = 10. XGBoost was run with ntree = 500 trees and 
a depth of max_depth = 6. Car trip inference results reported in the literature are provided in the last line of the Table to 
show that the scores obtained using our cycling datasets are not as good, thus motivating the need for a new trip purpose 
inference approach. 

METHOD BS BS+P BS+SEG[SM] BS+SEG[LM] BS+SEG[SM]+P BS+SEG[LM]+P 
LogisticR 
LinearSVM 

NonLinearSVM 
SVM (GAK) 

RandomForest 
XGBoost 

0.59/0.20 
0.58/0.20 
0.61/0.30 
N/A 

0.66/0.19 
0.66/0.40 

0.58/0.26 
0.58/0.25 
0.65/0.36 
N/A 

0.66/0.20 
0.71/0.42 

0.64/0.42 
0.64/0.42 
0.62/0.13 
0.47/0.12 
0.61/0.11 
0.71/0.43 

0.59/0.28 
0.59/0.26 
0.67/0.40 
0.47/0.12 
0.65/0.21 
0.72/0.44 

0.64/0.42 
0.64/0.42 
0.62/0.13 
N/A 

0.61/0.11 
0.72/0.45 

0.58/0.30 
0.59/0.29 
0.68/0.41 
N/A 

0.66/0.22 
0.73/0.47 

XGBoost + Unders. 
XGBoost + Overs. 

0.41/0.28 
0.68/0.40 

0.52/0.32 
0.69/0.46 

0.41/0.31 
0.69/0.46 

0.47/0.34 
0.72/0.48 

0.45/0.34 
0.70/0.48 

0.48/0.36 
0.73/0.50 

Car Trip Inference [0.70-0.90] [0.72-0.82] N/A N/A N/A N/A 

3.5.2 Classification Results. Table 2 shows the F1 scores for diferent combinations of methods and spatio-
temporal, street segment and personal features. To account for the efect of the imbalanced nature of our dataset 
(larger proportions of commuting trips than any other type), we report both micro- and macro-F1 scores (m-F1 
and M-F1). Signifcantly lower micro scores when compared to macro values, refect high misclassifcation among 
the most common labels, with labels with lower numbers of samples being correctly classifed. On the other hand, 
macro scores signifcantly lower than micro scores are associated to poor classifcation rates among labels with 
lower numbers of samples, with common labels being correctly classifed. 

For each method, the dataset is divided into training (70%) and testing (30%) sets randomly selected ten diferent 
times, and average F1 scores across all runs are reported. We evaluate the methods described in the previous 
section for the following sets of features: (a) each trip is exclusively characterized by its spatio-temporal features 
(BS), (b) each trip is characterized by a combination of spatio-temporal features and personal data about the 
cyclist (BS+P), (c) each trip is characterized by a combination of spatio-temporal and segment features computed 
using both the short- and the long-term memory approaches (SEG[SM/LM]), and (d) each trip is characterized 
by a combination of spatio-temporal, segment features computed using both short- and long-term memory 
approaches, and personal data about the cyclist. Results for the SVM (GAK) method are only reported when using 
segment features since it only works when the training data can be specifed as a time series, which is not the 
case for the spatio-temporal or personal information. For comparison purposes, the last row of the Table contains 
the range of accuracy values reported in the literature [15, 24, 40, 41, 46, 48, 51, 71] for diferent combinations of 
methods (SVM, Logistic, Random Forest) and sets of features to infer trip purpose using car-based GPS data. 
The frst important observation is that the features and methods that are currently used for car trip purpose 

inference (frst two columns in the Table) do not work as well for cyclist-collected GPS data. We can observe 
that the results achieved using BS and BS + P features extracted from car-generated GPS data provide accuracies 
between 0.7 and 0.9; while the same features extracted from cyclist-collected GPS data to infer trip purpose 
provide much lower scores with maximum values (after transforming F1 scores to accuracies) between 0.66 for 
BS and 0.71 for BS + P . Thus, as proposed, we set out to explore results when the inference methods are enhanced 
using street segment features from the cycling trip. As the table shows, adding segment features to the baselines 
improved the F1 scores to m-F 1 = 0.72, M-F 1 = 0.44 (third column); and this result was also enhanced by adding 
the personal data of the cyclist, which boosted F1 scores to m-F 1 = 0.73, M-F 1 = 0.47 (fourth column). The 
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SVM (GKA) method showed really poor scores compared to all other approaches. We hypothesize that these low 
scores are probably due to the fact that only street segment features are considered, and thus, not incorporating 
the spatio-temporal and personal features heavily impacts the fnal scores. Given the imbalanced nature of our 
sample, it is also important to compare these results against a simple majority classifer that considers all labels 
as the one with the largest presence in the dataset (commute in our case). Such classifer resulted in much worse 
F1 scores, m-F 1 = 0.61, M-F 1 = 0.09, which confrmed that XGBoost with spatio-temporal, segment and cyclists’ 
personal features had the highest predictive power. 

These results indicate that incorporating personal data and information about the built-in and social environ-
ment visited during the trip helps in improving trip purpose inference when only spatio-temporal features are 
considered by 7%; which might in turn indicate that diferent types of cyclists choose diferent types of built-in 
and social environment features (consciously or unconsciously) depending on the purpose of their trips, since the 
personal data and segment features help in diferentiating across trip purposes. It is also important to highlight 
that the best results were obtained with the long-term memory option (LM) i.e., considering the evolution of the 
various built-in and social environment features over all past months has a stronger predictive power than simply 
considering their values during the month when the trip took place; which could signal that the mental map 
that cyclists form about their environment is constructed over months of events, rather than just a few weeks 
surrounding the trip. 
Focusing on the best method, XGBoost with spatio-temporal data, long-term memory segment data and 

personal data (with ntree=500 and max_depth=6), we next explore the most relevant features in the identifcation 
of trip purpose. Since XGBoost is trained using an ensemble of decision trees, the technique can automatically 
provide the importance of each feature during training (see Figure 5). The top most relevant features in identifying 
diferent types of trip purpose were: trip duration, hour at which the trip took place, slope, number of green areas 
(as POI), 311 cycling-related complaints, trip distance, network centrality of the segments, crime or presence of 
cycling facilities. As the list shows, trip purposes can be identifed, in large part, through basic spatio-temporal 
features of the trip, through POI visited, through a few social environment features including crime rates and 
the quality of the segments, both in terms of maintenance and road network connectivity, and through some 
personal data such as cycling experience. Crash, parking violations or road type data did not appear among the 
top features, which indicate that these features are not as relevant in identifying trip purpose i.e., their values are 
more homogeneous across trip purposes. Section 4 will delve more into the identifcation of the specifc types of 
features that are important for each trip purpose. 

3.5.3 Class Imbalance. The diferences between F1 macro and micro scores (26% for the best approach) show 
that poor classifcation rates happened more among labels with lower numbers of samples, while common labels 
were being correctly classifed. Exploring the confusion matrix for the best approach (XGBoost), we observe 
that the vast majority of misclassifed samples were being wrongly classifed either as social or commute, the 
two majority classes (see Figure 6). This could be due to the imbalanced nature of the dataset, or to the fact that 
certain labels from the original dataset, such as shopping or errands, might be difcult to diferentiate among 
themselves or from others. To assess both hypotheses, we explore two approaches and report their F1 scores: (1) 
over/undersampling and (2) reducing the labels to a smaller, concise set. For the frst approach, undersampling 
reduces the number of samples of each class to the smallest value, and repeats the process several times to 
account for selection biases; while oversampling creates synthetic samples, via k-nearest neighbors, for all classes 
until they reach the number of samples for the majority class. We used the imbalanced-learn toolbox [37] to 
implement both methods and the resulting F1 scores show that while undersampling provided worse F1-scores, 
oversampling slightly improved the classifcation rates for the minority classes (macro-F1 increased 3%, see Table 
2 last rows). 
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Fig. 5. Top most relevant features ordered by importance Fig. 6. Confusion Matrix for XGBoost with eight classes. 
with XGBoost. We can observe that basic spatio-temporal Darker colors represent best trip purpose classification val-
features such as duration of the cycling trip or hour at which ues. Most of the classification errors wrongly assign as trip 
the trip took place are among the most determinant of trip purpose either commute or social as can be observed in those 
purpose. two columns and rows. 

Table 3. Trip purpose classification for four trip purposes: commuting, exercise, school and social. Results are reported as 
averaged micro-F1/Macro-F1 scores over ten random runs for each method and feature set. 

METHOD / FEATURES BS BS+SEG[SM] BS+SEG[LM] BS+SEG[SM]+P BS+SEG[LM]+P 
LogisticR 0.77/0.35 0.81/0.62 0.79/0.45 0.81/0.62 0.79/0.49 
LinearSVM 0.78/0.34 0.81/0.63 0.79/0.43 0.81/0.63 0.79/0.48 

NonLinearSVM 0.78/0.49 0.80/0.28 0.82/0.58 0.80/0.27 0.83/0.56 
SVM(GAK) N/A 0.69/0.22 0.69/0.23 N/A N/A 

RandomForest 0.80/0.31 0.80/0.26 0.81/0.33 0.80/0.26 0.81/0.33 
XGBoost 0.83/0.58 0.85/0.66 0.85/0.66 0.85/0.67 0.85/0.67 

For the second approach, reducing the set of trip purpose labels to a smaller number of distinct purposes, we 
use the confusion matrix from the best XGBoost solution to merge the classes that have a majority of misclassifed 
samples as another label into that label. As a result, errands, shopping and work-related trips are merged into 
commute. The fnal set of labels: commute, exercise, social and school, although reduced, is still highly useful from 
an urban planning perspective. Table 3 shows the F1 scores for this new setting. We observe that the F1 scores 
improve across methods by 12% in the best-case scenario, which is XGBoost, with m-F 1 = 0.85, M-F 1 = 0.67. 
As can be seen, both macro and micro scores improved, indicating that the classifcation accuracy improved 

for both the majority and minority labels. Similarly to the experiment were all trip purposes were considered, the 
best F1 scores were obtained when the trips were represented not only with spatio-temporal trip features, but 
also with specifc segment features as well as personal information about the cyclists. However, in this case, no 
diference in the F1 scores was observed between using a short-term or a long-term representation of the built-in 
and social environment features. This might be due to the fact that the baseline with only four trip purposes 
is already quite good (m-F 1 = 0.83, M-F 1 = 0.58), and as a result, the segment features improve slightly the 
F1 scores, without being able to capture the impact of the long or short term approaches. This is confrmed by 
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looking at feature importance for XGBoost, which shows that the social features, which are modeled in terms of 
short- and long-term memory, are of lower importance than general spatio-temporal and personal features. 

3.5.4 Spatial Autocorrelation. Many of the built-in and social environment features we use might be spatially 
autocorrelated i.e., their value could be very similar to, or completely diferent from, those in the neighboring 
segments. For example, if the number of crimes in a street segment is high, the number of crimes in segments 
nearby might also be high. Here, we explore the use of spatial autocorrelations as yet another feature to predict 
cycling trip purpose. First, we identify all autocorrelated features and enhance each segment’s feature vector with 
as many elements as autocorrelated features have been detected; with each element representing the average 
value for that feature across all of the neighboring segments. Next, all the new segment representations are used 
to re-run the predictive algorithms for all diferent combinations of built-in and social environment features. The 
spatial autocorrelation is analyzed using Moran’s I statistic with a spatial weights matrix that defnes neighboring 
segments using a weighting strategy based on the distance between the mid-points of any pair of segments, with 
a distance band (cutof point after which feature values are ignored) of 150m, since it gave the best prediction 
results. Features are deemed autocorrelated when the p-values for the Moran’s I test were p < 0.05. In our dataset, 
129 out of 131 features have been identifed as being positively spatially autocorrelated with I values in the 
range of 0.02 < I < 1, indicating that built-in and social environment features tend to cluster, rather than being 
dispersed or randomly distributed. 
Figure 7 shows the results for the best approach identifed for four and eight purpose classes: XGBoost with 

oversampling using baseline, segment (long-term memory) and personal features. As the table shows, the F1 
scores improved for the four-class setting and remained the same for eight classes. Using four classes improved 
the micro-F1 score by 1% and the macro-F1 by 3%, showing that including spatial information into the prediction 
helped in better identifying trip purpose. 

3.5.5 Classification By Cyclist or Demographic Type. The previous experiments have explored trip purpose 
classifcation for all types of cyclists, independently of their demographic and cycling expertise characteristics. 
In this section, we evaluate trip purpose classifers exclusively built for individuals with specifc demographic 
features or types of cycling expertise. The objective of this experiment is to identify whether trip purpose 
prediction works better for certain types of individuals, based on their demographic characteristics or cycling 
expertise. For example, through this analysis we will be able to evaluate whether trip purpose prediction for 
fearless cyclists is more or less accurate than that for cautious cyclists; whether trip purpose prediction works 
better for certain age groups; or whether trip purpose is more predictable for females than for males. 

To carry out this experiment, we frst take from the pool of 7, 367 trips only those whose cyclists have provided 
personal demographic information, which accounts for 51% of the total. We then divide the trips by cyclist type, 
age range or gender, and repeat the trip purpose inference experiments for each individual variable across all 
of its types. To guarantee statistical signifcance of our inference experiments, we only report results for those 
features, and their types, that have at least 10 samples per trip purpose. Figure 8 shows the micro-F1 scores 
computed using XGBoost and oversampling averaged over ten runs and four trip purpose labels. 
We can observe that as cyclists report less confdence in their cycling skills from strong to comfortable, the 

micro-F1 scores decrease 9% showing that trip purpose is most easily predictable for strong cyclists. This result 
could refect that highly confdent cyclists tend to be more repetitive in their routes, and thus more predictive; 
while cautious cyclists might be more entropic in their behaviors and thus less predictable. A similar result is 
observed across age groups, with 25-34 and 35-44 being the groups with the most predictable trip purposes, 
possibly refecting a more homogeneous selection of types of routes than younger 18-34 or older 45-54 age groups 
with F1 scores 14% lower than the best age group. Finally, the smallest diferences across F1 scores were observed 
for gender, with F1 scores 1% higher for males than for females, which indicate that both genders are almost 
equally predictable in terms of trip purpose. Overall, this experiment shows that if demographic features or 
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cycling experience were to be collected for the majority of cyclists in a city, trip purpose prediction could be 
improved for strong and enthused cyclists and for age groups 25-34 and 35-44; while for the other features, a 
general classifer would do a better work. 

4 ROUTE CHOICE 
In this section, we propose and evaluate a novel method to analyze route choice i.e., to understand the specifc 
built-in and social environment features that cyclists appear to favor when choosing a cycling route. The method 
has two main components: the route collection component, that collects the route choice set i.e., the set of routes 
that the cyclists could have taken to go from the trip origin to a destination, and characterizes each route by their 
built-in and social environment features; and the choice analysis component, that compares the cyclists’ chosen 
routes against the route choice set to identify the set of built-in and social environment features that cyclists 
appear to favor with statistical signifcance (see Figure 1, bottom, for details). As stated in the introduction, 
our method improves current approaches by using crowdsourced route choice sets provided by Google cycling 
directions which incorporate route choices that represent diferent mental models and that take into account the 
infuence that others might have on the selection of a specifc route. 

4.1 Route Collection 
The route collection component uses Google’s maps cycling directions and open datasets with information 
about the built-in and social environment features of the street segments. Given a set of cyclist-collected trips 
characterized by their GPS traces, we frst retrieve the route choice set from Google’s cycling directions API. For 
a cyclist-collected trip (Ci ) between an origin and a destination, Google provides a maximum of three suggested

1, ..,3routes between the same origin and destination points (G ). As explained in Section 3.4, each cyclist-collected i 
and Google-suggested route is transformed into a list of street segments, and each segment is then characterized 

j ′ ′with a set of built-in and social environment features i.e., Ci = {s1, ..., sn } and G = {s1, ..., s } j ∈ [1 − 3]i m 
where si is a segment in the trip characterized by its features si = { f1, ..., fl } and where cyclist-collected and 
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Fig. 9. Example of a cyclist-collected route (in red) together with the three Google-suggested routes. We can observe that 
certain parts of the cyclist route overlap with the suggested ones, while others are diferent. The focus of this section is to 
understand the potential reasons behind cyclists’ route choices.2 

Google-suggested routes can have diferent number of segments (m = n or m , n). Figure 9 shows an example 
with a cyclist-collected trip, and with the route choice set retrieved from Google. 

4.2 Choice Analysis 
The choice analysis component focuses on the identifcation of the diferences between the cyclist-collected 
routes and the other Google-suggested routes that cyclists could have chosen. These diferences, which will be 
characterized using the built-in and social environment features of the cycled routes, will throw some light into 
the potential reasons that cyclists might have to favor one route versus another. 

To achieve this objective, we propose a two-step method. Figure 10 shows the main components for each step. 
In the frst step, we aim to identify the pairs of cyclist-collected and Google-suggested routes that are statistically 
signifcantly diferent based on the distributions of their segments’ features. Since each route can have a diferent 
number of segments and each segment is characterized by a set of p features, we propose to run a multivariate, 
two-sided Kolmogorov-Smirnov test (KS) [39]. For each cyclist-collected trip Ci we will run a KS test with each 

jof its possible Google-suggested routes i.e., KS(Ci , Gi ) j ∈ [1-3]. These non-parametric tests will output the pairs 
of trips for which the built-in and social environment features of the street segments cycled are statistically 
signifcantly diferent i.e., cyclists appear to favor certain features versus others available in the suggested Google 
routes. Due to the large number of tests we run, it is highly possible that some of the signifcant results will be 
false positives. To control for this, we apply the Benjamini-Hochberg procedure with a false discovery rate of 
0.05 [7]. 

In the second step, we focus on the identifcation of the specifc features that make the pairs of trips identifed 
in step one statistically diferent, and that might be playing a role in the selection of a route. For that purpose, we 
run, for each built-in and social environment feature fl a multivariate, two-sided Mann-Whitney (MW) test [35] 
between all cyclist-collected and Google-suggested routes that have been identifed as statistically signifcant 
diferent by the KS test in step one i.e., MW (Ci (fl ), Gi (fl )) where i = 1, ..., q is the number of signifcantly diferent 
pairs extracted in step one and fl is one specifc built-in or social segment feature. These non-parametric tests 
will identify whether the medians of each feature are signifcantly similar or diferent across the segments of the 
cyclist-collected and Google-suggested routes. To evaluate in depth the magnitude and direction of the diferences 
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Fig. 10. Flowchart of the proposed two-step statistical method to analyze Route Choice. 

found, averages and standard deviations per feature across both cyclist collected and Google-suggested routes 
are also computed. 
Some of the features identifed in step two as signifcantly diferent across cyclist-collected and Google-

suggested trips could also appear in pairs of routes that were not deemed signifcantly diferent by the KS 
test in step one i.e., certain pairs of routes could have features that are statistically diferent, but not enough 
features to make the two trips statistically diferent. To identify these features, we run step two over the set of 
cyclist-collected and Google-suggested trips that were not identifed as being statistically signifcantly diferent 
by the KS test in step one; and eliminate them from the list of signifcant features extracted in the frst run of 
step two. We use this fnal set of features to explain the types of route choices made by cyclists in the urban 
environment under study. It is important to clarify that our statistical analyses will be afected by any existing 
bias in the open and crowdsourced datasets i.e., certain social features, such as 311 requests, might be more 
present in afuent areas and as a result our analyses could fail to reveal fndings in less afuent areas. 

4.3 Evaluation 
To evaluate the proposed approach, we run three experiments. The frst experiment focuses on the identifcation 
of the street segment features that might afect route choice in general, while the second experiment focuses on 
the identifcation of such features for each specifc trip purpose: commute, exercise, social and school. Finally, we 
use the built-in and social environmental features identifed to explore the predictability of a route being selected 
by a cyclist. 

#»
4.3.1 Dataset. We run the experiments using the |C | = 7, 367 cyclist-collected trips from the city of Philadel-

phia described in section 3.5; and characterize the segments in each trip using the set of 41 built-in and social 
environment features presented in section 3.3. The analyses are both done when the social environment features 
(crime, crash, parking and 311) are computed using the long-term memory approach i.e., all events from May 
2014 onwards are counted as potentially infuencing a cyclist choice; and the short-memory approach i.e., only 
2Image generated using GPS Visualizer. 
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the events from the month when the trip takes place are considered as potential features that could infuence 
route choice. 

4.3.2 Analysis across Trip Purposes. Figure 11(a) shows the features identifed as playing a signifcant role 
in route choice at p < 0.01 (for both KS and MW tests). For clarity purposes, we rank the features by their 
−loд(p) where p is the p-value for the statistical test, and show results for both the short- and long-term memory 
approaches. Recall that the smaller the p-value (the larger its −loд(p)), the more signifcant the feature is i.e., 
we can assure with higher certainty that the feature does play a role when cyclists decide which route to take. 
The frst observation is that the top three most important features are common for both long- and short-term 
memory: presence of green areas, presence of cycling facilities and road centrality, specifcally eigenvector 
centrality computed when street segments are considered as nodes. Our analysis indicates that when cyclists 
in Philadelphiachoose a route, they frst look for agreeability, safety and convenience. In fact, cyclists appear 
to highly favor routes that are agreeable, defned as the presence of green areas and parks on the route; routes 
that are safe, with safety defned by the presence of cycling facilities such as various types of protected (or not) 
bike lanes; and by the convenience of the route, represented by the centrality of the streets i.e., how connected 
the route is to other routes. Previous work has found that the topological centrality of streets is signifcantly 
correlated to retail commerce vitality, popularity and human way-fnding [20]. Our fndings for the City of 
Philadelphiacould indicate that the mental model cyclists have of their cities is heavily infuenced by major, 
commercial and popular roads. In fact, the list of statistically signifcant features (although with smaller p-values) 
also includes some POIs such as professional service or nightlife spots, typically present in major central roads. 
Our analysis also identifes that the crime rates of the cycled routes play a signifcant role in route choice, 

with cyclists avoiding areas with high crime in Philadelphia. Although this feature is important in both long-
and short-term memory analyses, the p-value is much lower in the longer-term possibly indicating that the 
mental association of crime to parts of the city takes a long time to form. Similar results have been reported in 
other mobility studies that look at the impact of crime in, for example, the choice of public transportation routes 
[1]. Figure 11(a) also shows that the quality of the road, measured via 311 reports about cycling conditions in 
Philadelphia, also plays a role in route choice, and that that role is more signifcant in the long-term approach. As 
with crime rates, this indicates that forming a mental map of road quality is not based on single events but rather 
on an accumulation of knowledge and route familiarity over a long period of time. A detailed analysis by type of 
specifc 311 reports showed that the most signifcant issues afecting cyclist route choice and forcing to look for 
alternative routes are the presence of double parked cars, the presence of loading zones, illegal dumping, street 
light outage or the presence of construction sites. Interestingly, crash rates, although signifcant, were identifed 
as having much less importance in cyclists’ route choice than all the other previously discussed features, and 
was only identifed as signifcant for the long-term approach. Another interesting feature is the presence of 
transportation services (e.g., metro or bus stops), which is identifed also among the top most signifcant features 
in cyclists’ route choice for Philadelphia. This factor could be revealing multi-modal transportation patterns 
where cyclists might combine bicycle with metro or bus, and as a result, having these types of services on the 
routes they follow becomes an important variable for them. 

4.3.3 Analysis by Trip Purpose. Figure 11(b) shows the top four most statistically signifcant features (p < 0.01) 
for each of the following four trip purposes: commute, exercise, social, and school. We only report results for 
the features computed using the long-term approach, although the short-term revealed similar fndings. We 
observe that road centrality is a feature that cyclists take into account for commute, social and school purposes, 
but not when the trip purpose is exercise. Cyclists in Philadelphia appear to favor routes that go through central, 
well communicated street segments that will potentially drive them faster to their fnal locations. However, and 
logically, this feature is not found signifcant when the trip purpose is exercise, where cyclists are not so interested 
in rapidly moving between locations but rather on enjoying the route. Our results also show that cyclists in 
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(a) Statistically highly signifcant segment features for route choice 
across all trip purposes in Philadelphia. Results for both short- and 
long-term memory are shown. Larger −loд(p) values are associated 
to higher statistical signifcance for any given feature. 

(b) Top statistically signifcant segment features for each of the 
four trip purposes using long-term memory. Each row has four 
elements, one per trip purpose: commute, exercise, social and 
school. A given element is colored if there is a statistically sig-
nifcant relationship between segment feature and trip purpose. 

Fig. 11. Statistically significant social and built-in environment segment features for route choice. 

Philadelphia favor routes that go through regions with low crime rates except for the case of commuting when 
cyclists appear to be giving more importance to reaching a destination quickly (centrality) than to the safety 
of the route. Finally, cyclists in Philadelphia also appear to choose routes that have cycling facilities available 
when the trip purpose is commute, exercise or social, but not for school purposes, which could reveal the fact 
that when going to school, speed (measured via road centrality) is given more importance than cycling safety. 

4.3.4 Predicting Cycled Routes. We have already shown that certain built-in and social environment features 
appear to be favored by cyclists. In this section, we evaluate if we can use these features to predict whether a 
route will be cycled by a cyclist or not in Philadelphia. As proposed, this new experiment provides an analysis 
that is complementary to the two-step statistical signifcance test, by predicting whether a route - characterized 
by its built-in and social environmental features - might be taken or not by a cyclist. Such predictive model could 
potentially help urban planners in making informed design decisions about new routes as well as on the analysis 
of cycling route likeability. 
We frame the prediction as a binary classifcation problem (is the route taken by a cyclist or not), and focus 

on regression methods to easily identify the most predictive features via coefcient and signifcance analysis. 
We evaluate the following two regression methods: Logistic and Ridge (with a binomial function). Additionally, 
to assess the role that feature selection might have on the prediction accuracy, we evaluate these methods 
considering diferent sets of built-in and social environmental features as independent variables. Specifcally, we 
consider the following three sets of independent features: (i) all built-in and social environmental features (for 
both long- and short-term memory), (ii) all built-in and social environmental features identifed as statistically 
signifcant in the two-step statistical signifcance test presented in Section 4.2 (for both long- and short-term 
memory) and (c) similar to (b), but with an efect size correction for both long- and short-term memory, using the 
Z-score (|Z -score| > 1.96) [30]. 
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Table 4. Route selection prediction results using two methods: Logistic and Ridge Regression and six diferent subsets of 
built-in and social environment features. 

METHODS Logistic Regression Ridge Regression 
Features AIC BIC R-sq AIC BIC R-sq 

1- All features (long-term memory) 
2- All features (short-term memory) 
3- Signifcant features by p-value (long-term memory) 
4- Signifcant features by p-value (short-term memory) 
5- Signifcant features (p-value and efect size) (long) 
6- Signifcant features (p-value and efect size) (short) 

62.509 
62.519 
49.136 
47.128 
43.108 
41.102 

371.488 
371.499 
294.980 
285.522 
266.603 
257.147 

0.6243 
0.6262 
0.6386 
0.6371 
0.6335 
0.6325 

63.444 
63.442 
50.089 
48.086 
44.067 
42.064 

372.421 
372.421 
295.933 
286.481 
267.561 
258.109 

0.0583 
0.0575 
0.0416 
0.0402 
0.0308 
0.0294 

All models resulting from the combination of the two methods and the six feature sets are evaluated using 
AIC, BIC and the pseudo R-squared values. It is important to clarify that since our models are binary classifers, 
the R-squared we use is a pseudo-R-squared value (McFadden 's) [45]. Table 4 shows the main results. We can 
observe that the Logistic-based models outperform the Ridge models when compared for the same subsets of 
features i.e., lower AIC and BIC, and higher R-squared values. Furthermore, the prediction models generally 
work better when only the statistically signifcant features identifed in Section 4.3.2 are used as predictors, with 
slightly better results for short-term memory features (see lines 4 and 6 versus lines 3 and 5). We can also observe 
that as we incorporate more features into the models i.e., consider all features as input to the regression, the AIC 
and BIC values increase a lot, while R-squared values decrease. This result can be explained by the fact that AIC 
penalizes complex sets of features, which in our case is represented by all features being considered (lines 1 and 2 
in the Table). Additionally, we can also argue that inputting only the statistically signifcant features from the 
previous section, we are performing a feature selection process that appears to positively afect the accuracy of 
the inference method (AIC and BIC values are lower, R-squared values are higher). To select the best model, we 
look both into AIC/BIC values as well as into the pseudo-R-squared values. Logistic-based models show much 
higher R-squared values than Ridge-based models with values between 0.6190 and 0.7175 as opposed to 0.02 and 
0.05, respectively. As a result, it would be advisable to select any Logistic-based model between lines 3 and 6 in 
the Table, with a slight preference for model 3 given its slightly higher R-squared value. 

Finally, looking into the signifcant independent features of the best Logistic regression and its coefcients, we 
observe that both centrality measures and cycling facilities are considered as the most infuential features in the 
predictive model, with coefcients between |1.1| and |0.08| (at p < 0.01); while green areas are also signifcant 
but with a much smaller coefcient (|0.004| with p < 0.01). These features represent a subset of the features 
identifed in Figure 11(a) and with a slight order change in signifcance. However, both results are coherent 
since the two-step analysis focuses on identifying signifcance while the Logistic regression model focuses on 
identifying signifcance from a prediction point of view, which is always more restrictive. 

5 DECISION SUPPORT TOOL FOR DECISION MAKERS 
In this paper, we propose to use GPS data from cycling experiences to infer trip purpose and analyze route choice. 
Ultimately, we aim to help decision makers evaluate what built-in and social environmental changes could be 
implemented, and in which locations, so as to attract more cycling activity. In this section, we explain in detail 
the decision support tool that the methods proposed in this paper provide, and discuss a couple of use cases. 

2Map visualization using Leafet and Carto tiles. 
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Fig. 12. Majority Origin by Purpose. Fig. 13. Majority Destination by Purpose. Fig. 14. Top Second Destination. 

Fig. 15. Along-the-route Commuting. Fig. 16. ALT Commuting with Threshold. Fig. 17. Destination Commuting. 

We bootstrap the decision support tool with the GPS traces and trip labels used in this paper. These traces 
are used to build two tools: the trip inference method and the route choice model. With these tools in place, 
cyclists in Philadelphia can be encouraged to continue to collect their GPS traces, but without the need to label 
trip purpose every time they cycle. The assumption is that it is easy for cyclists to collect GPS traces (just press a 
button in the mobile application), but it is more tedious to ask them to label their trips. As urban planners access 
newly collected GPS cycling traces, they can use the trip purpose inference method as a black box to label each 
trip collected with a trip purpose. As we have shown in Section 3.5, inference methods can achieve F-1 scores of 
up to 0.86, giving high confdence to the assigned labels; if necessary, the tool can be customized to accept or 
reject inferences based on a desired minimum accuracy. The inferences can be visualized as aggregated inferred 
trip purpose maps that divide cities into small geographical areas characterized by the trip purpose(s) in that 
region, as shown in Figures 12-17. With our methods, urban planners can have access to three diferent types of 
maps: aggregated distribution of trip purposes by origin, by destination or along the route, meaning that the 
maps associate to each region the trip purpose(s) of cycling trips that start in the region, that end in the region 
or that pass through that region, respectively. Figures 12, 13 and 14 show examples of such maps, where each 
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geographical area is color-coded with the trip purpose that represents the majority (more than 50%) of origin 
or destination trips for that region, or the second majority trip purpose destination, respectively. Lack of color 
implies that there are no recorded trips for a given trip purpose for that geographical region i.e., cyclists appear 
not to start in, fnish at, or pass through that geographical region for any trip purpose. Interestingly, these maps 
show that the most cyclist active areas in Philadelphia are in the south-east, as reported in [9]. 
Once trip purpose labels are assigned to each individual trip, these can be used as input to the route choice 

analysis, to assess the built-in and social environmental features favored by cyclists for each type of trip purpose, 
and to rank them by importance, as shown in Section 4. Combining trip purpose maps with the route choice 
fndings, urban planners can propose policy or infrastructure improvements for a given region that is considered 
mostly of a specifc type of trip purpose. For example, we have shown that cyclists in Philadelphia highly favor 
routes with small numbers of 311 reports (such as double-parking), possibly related to cycling safety and speed; 
or that cyclists in Philadelphia highly favor cycling facilities, including bike parking (see Figure 11(a)). These are 
statistically signifcant fndings that characterize cyclist preferences in Philadelphia, however, such preferences 
are not necessarily present throughout the cycling infrastructure. Thus, urban planners willing to improve cycling 
conditions for, for example, commuters, could use an along-the-route trip purpose map, as shown in Figure 15, to 
identify all the geographical regions where the majority of the passing trips are commuting, and suggest to put in 
place more parking enforcement ofcers in those areas, in the hopes of decreasing the number of double-parked 
cars, improving cycling safety and speed and, as a result, increasing the number of cycling commuting trips. One 
could argue that placing more parking enforcement ofcers in all the regions shown in Figure 15 is not doable due 
to potential lack of funding. Given the type of data we collect, the decision support tool allows urban planners 
to put minimum thresholds in the number of trips per region, thus identifying the most popular cycling areas 
where parking enforcement changes would have more impact. As Figure 16 shows, the along-the-route (ALT) 
commuting regions heavily diminish when a minimum number of trips per month is required (in the Figure, that 
number is approximated to at least the average number of trips across all regions with cycling trafc). Thus, such 
map could be used, instead of Figure 15, to assess locations where assigning more parking enforcement ofcers 
would have the largest impact in improving cycling conditions. Continuing with the commuting example, urban 
planners could use the destination trip purpose map (Figure 17) to identify all the regions where the majority (or 
a minimum threshold) of the commuting trips have a given location as its destination, and propose to build bike 
parking facilities in those regions, which could potentially encourage more cyclists to commute to work. 
Overall, these examples show that using the proposed decision support tool, urban planners could identify 

policy and infrastructure changes that, if implemented, would have a positive impact for the cyclist community in 
Philadelphia. But even more interesting, the decision support tool could also be used to assess the proposed policy 
and infrastructure changes. In fact, by collecting GPS traces from cyclists prior- and post-implementation of 
changes, the support tool would allow urban planners to assess the impact that the new policies or infrastructures 
have in the cycling behaviors, with the fnal aim of encouraging cycling in the city. 

6 DISCUSSION 
In this paper, we have presented novel methods to infer cycling trip purpose and to analyze cyclists’ route choices, 
and we have evaluated them for the City of Philadelphia. Due to its cost, traditional, survey-based approaches 
to understanding cycling behaviors highly limit the frequency at which cycling information can be collected. 
The methods presented here are solely based on open and crowdsourced data that cities and cyclists are already 
collecting for other purposes. While cities worldwide are embracing the use of open data repositories [52], cyclists 
are using a plethora of mobile applications to collect their cycling GPS traces. As a result, the methods presented 
in this paper have two important implications: (1) cycling behaviors, and its changes over time, can be modeled 
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and analyzed with higher frequency, and (2) cycling behaviors can now be studied at lower costs, since the 
datasets used by the proposed methods are already being collected for other purposes. 

Our paper also ofers a set of important insights for cities and cyclist advocacy groups willing to replicate these 
automatic approaches in other cities. We have shown that cycling trip purpose inference methods work best 
when not only the spatio-temporal data of the trip is considered, but rather when that data is enhanced with 
personal information about the cyclist, as well as social and built-in environment features. This result highlights 
the importance of (a) cities having access to a plethora of social and built-in environment features and (b) cyclists 
willing to share their obfuscated traces together with some personal information. 

Our analyses for the City of Philadelphia have also shown that the mental map that cyclists form of their 
environment requires processing months of experiences and events, and are not formed in short periods of time. 
As a result, cities and cyclist organizations willing to use GPS traces collected by cyclists should make sure 
that the data collection period is long enough to be able to fully assess the role that diferent social and built-in 
environment features play in how cyclists perceive and choose the streets they go through. The inference by 
cyclist and demographic type has also shown the presence of certain biases in the classifcation, with worse 
classifcation rates for more unexperienced, younger and older cyclists. This result might point to the need to 
collect more GPS traces for these populations, as well as for longer periods of time, since their behaviors might 
be more entropic and thus harder to model in terms of trip purpose or route choice. 
The route choice analyses discussed for the city of Philadelphia have confrmed many behavioral fndings 

previously reported in survey-based studies. This has important implications for urban planners working on 
both cyclist infrastructure and the general layout of cities, since it provides a novel automatic method to analyze 
cyclist behavior and route choice at large scale, only using open and crowdsourced data. Finally, the decision 
support tool described with use cases for the City of Philadelphia could potentially aid urban planners in other 
cities to identify specifc policy or infrastructure changes that would improve cycling experiences in their regions. 

7 CONCLUSIONS 
In this paper, we have presented novel methods to analyze two important issues characterizing urban cyclist 
behavior: trip purpose and route choice. We have proposed the use of spatio-temporal and personal cyclists’ 
information as well as features characterizing the routes’ street segments built-in and social environment to 
predict the purpose of a cycling trip. Our results using over 7, 000 trips and their corresponding GPS traces for the 
City of Philadelphia show that the best approach yielded an F1-score of 86% using a combination of XGBoost and 
oversampling to classify across four trip purposes. We have also presented a statistical method to understand the 
role that various built-in and social environment features play in the way cyclists choose a route. We have shown 
that cyclists in Philadelphia tend to favor routes with green areas, cycling facilities and road centrality, which 
refect general preference for healthier parts of the city, safer experiences through for example, protected bike 
lanes, and faster routes through central street segments. However, trip purpose might alter the relevance given to 
such features. In fact, our analyses reveal that commuting trips in Philadelphia favor faster routes while exercise 
trips focus on enjoyable routes; and that social or school trips give a lot of importance to fnding routes through 
areas with low crime. Finally, we have described a decision support tool that shows that the methods presented 
are highly useful for urban planners willing to improve cycling experiences in their cities; and accessible to many 
cities since they are based on open and crowdsourced data. 
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