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ABSTRACT
In cross-language information retrieval using probabilistic struc-
tured queries (PSQ), translation probabilities from statistical ma-
chine translation act as a bridge between the query and document
vocabulary. These translation probabilities are typically estimated
from a sentence-aligned corpus on a word to word basis without tak-
ing into account the context. Neural methods, by contrast, can learn
to translate using the context around the words, and this can be
used as a basis for estimating context-dependent translation proba-
bilities. However, sparsity limits the accuracy of context-specific
translation probabilities for rare words, which can be important in
retrieval applications. This paper presents evidence that combin-
ing such context-dependent translation probabilities with context-
independent translation probabilities learned from the same par-
allel corpus can yield improvements in the effectiveness of cross-
language ranked retrieval.

CCS CONCEPTS
• Information systems → Combination, fusion and feder-
ated search; Multilingual and cross-lingual retrieval.
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1 INTRODUCTION
Cross-Language Information Retrieval (CLIR) is an information
retrieval problem in which documents are in different language
than the queries. To be able to apply the retrieval methods in such
setup, queries and documents need to be first transferred into a
common space, which is often done by applying translation tech-
niques either on the queries or on the documents. Documents are
typically much richer in context than queries, which can be better
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utilized by traditional machine translation systems. Zbib et al. [16]
introduce a Neural-Network Lexical Translation Model (NNLTM)
which uses the contextual information in the documents to produce
translations that are matched with the query terms. They show
that their model which utilizes several probable translations jointly
with their probabilities outperforms one-best document transla-
tions of the documents either created by an automatic translation
system or by a human translator. In this work, we first focus on
further improvement of the Zbib et al. models. Next, we investi-
gate joint approaches which combine NNLTM and Probabilistic
Structured Queries (PSQ) [3]. PSQ only uses information about
the query words without any context, but similarly to NNLTM, it
also provides several translation alternatives together with their
probabilities. As both these models provide multiple translation
possibilities which might also include numerous noisy translations,
combining them may help to mitigate the noise.

There are two main contributions in this paper: 1) we further
improve the model introduced by Zbib et al. and test it on new eval-
uation collections, and 2) we further outperform that model alone
when we combine the documents retrieved by this system with the
documents returned by PSQ using post-retrieval and in-retrieval
evidence combination methods. We show these further improve-
ments from combination on three test collections of moderate size,
two of which were not available to Zbib et al.

2 METHODS
This section describes details of the used translation approaches
and applied combination techniques.

2.1 Contextual translation
As compared to ambiguous short queries, documents have more
context available, and that context is typically leveraged by neu-
ral machine translation (NMT) systems to generate contextual-
ized translations of document terms. Typically, in a sequence-to-
sequence model, the target words are generated in a sequential
manner using the source context and the previous target words.
Devlin et al. [4] uses a similar approach to produce contextualized
word translation probabilities conditioned on source and target
word context. Later Zbib et al. extended the work to produce word
translations conditioned only on the source word context, which
were used to perform CLIR. In this work we use their NNLTM
which trains on the alignment output from word aligners to esti-
mate contextual word translation probabilities. Specifically, for an
aligned word pair 𝑓𝑖 ↔ 𝑒 𝑗 , it uses a contextual window of 𝑘 terms
around the source word 𝑓𝑖 to predict the target word 𝑒 𝑗 . NNLTM
consists of an embedding layer that maps the 2𝑘 + 1 source words
to separate embeddings which are concatenated and fed to a single
feedforward layer. The final layer produces a softmax distribution
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SW SO LT
Val Eval Val Eval Val Eval

# query 300 1000 300 1000 300 1000
# doc 996 10435 1041 10717 1047 10203
# rel/query 1.89 15.66 2.42 13.46 2.58 12.96
Avg. Doc. Len. 384.28 407.90 315.82 370.70 373.49 403.15

Table 1: CLIR test collection statistics.

of contextual probabilities 𝑃 (𝑒 𝑗 |𝑓𝑖−𝑘 ..𝑓𝑖 ..𝑓𝑖+𝑘 ) over the target vocab-
ulary and the model is optimized using cross-entropy loss using
one-hot representation for the target word 𝑒 𝑗

2.2 Non-contextual translation
We use the PSQ approach [3] to estimate term counts for a query
q in a document d using the translation probabilities of a query
word given the document terms. These translation probabilities
are generated using a statistical machine translation (SMT) model
trained on parallel text. We call these probabilities non-contextual
since they are learnt without taking into account either the source
or the target context.

2.3 Evidence Combination
Our goal in this work is to find if the performance of the context-
dependent system can be further improved by a combination with a
context-independent translation systems. To answer that, we specif-
ically explore two types of evidence combination: post-retrieval and
in-retrieval system combination.

The post-retrieval system combination is amethod for combining
the sets of documents acquired by different systems. In this work, we
make use of CombMNZ [5], a widely used data fusionmethod which
utilizes the scores of the documents returned by these systems.

CombMNZ uses the sum of document scores produced by differ-
ent retrieval systems and multiplies it by a parameter 𝑛𝑑 denoting
the number of systems that marks the document 𝑑 as relevant to
the query:

𝑠𝑐𝐶𝑜𝑚𝑏𝑀𝑁𝑍 (𝑑) = 𝑛𝑑 ∗
𝑛∑
𝑖=1

𝑠𝑐𝑠𝑖 (𝑑) (1)

Thanks to this, CombMNZ promotes the documents which are re-
turned bymultiple systems and can be thus expected to be especially
helpful in our setup.

In contrast to post-retrieval combination which combines infor-
mation about documents, in-retrieval system combination refers to
a combination in which word translation probabilities are directly
combined at query time. Application of this type of combination
is straightworward in our setup where we have two translation
approaches, each providing n-best translations with assigned prob-
abilities. A variant of CombMNZ is used in this case:

𝑠𝑐𝐶𝑜𝑚𝑏𝑀𝑁𝑍 (𝑤) = 𝑛𝑤 ∗
𝑛∑
𝑖=1

𝑠𝑐𝑠𝑖 (𝑤) (2)

for the combination of context-dependent and context-independent
translation probabilities. 𝑠𝑐𝑠𝑖 (𝑤) is the probability of the translation
of the word𝑤 by the 𝑖𝑡ℎ system, and 𝑛𝑤 is a count of translation

SW SO LT
#sentences 257k 88k 732k
#source words 1,706k 1,678k 11,864k
#target words 1,795k 1,665k 16,149k

Table 2: Parallel corpus statistics

evidence sources that include the word. This helps in augment-
ing the computed weight for a translation that occurs in multiple
sources. The combined weights are then used in the retrieval model
explained later in section 3.4.

3 EXPERIMENT SETUP
This section describes details of the test evaluation setup, training
data and the CLIR models used.

3.1 Test Collection
To evaluate our methods, we use CLIR test collections for three low-
resource languages, Swahili (SW), Somali (SO) and Lithuanian (LT).
These collections were created as a part of the IARPA MATERIAL
program1. The queries are in English and the documents are either
in Swahili, Somali, or Lithuanian. Though theMATERIAL collection
also contains audio recordings, we only use text documents for the
experiments in this paper. See Table 1 for collection statistics.

The MATERIAL queries are divided into three main types: sim-
ple, conceptual and hybrid. The description of the queries can be
found in [15]. The Validation (Val) set is the union of the IARPA
DEV, ANALYSIS1 and ANALYSIS2 collections and the queries from
IARPA query set Q1 are applied to this set. The Evaluation (Eval)
documents are the union of the IARPA EVAL1, EVAL2 and EVAL3
collections and the queries from query sets Q2 and Q3 are applied
to these documents.

3.2 Training setup for PSQ and NNLTM
Our approach for obtaining the parallel texts and training the neural
model closely follows the approach by Zbib et al. Both the NNLTM
and the PSQ models are trained on the same parallel data for a
given language pair. For MATERIAL languages, we use the bitext
available in the IARPA BUILD pack which contains roughly 25-44k
parallel sentences. In addition, we collect available parallel texts
from OPUS2 for Swahili and Somali. For Lithuanian, we use sen-
tences from Europarl.3 We also mine dictionaries from Panlex4
and Wiktionary5 and append them to the parallel corpora. The
parallel data is tokenized using Moses [7] toolkit, lowercased and
preprocessed to strip any punctuation, digits, and accents from the
characters. The preprocessed data is then used to train GIZA++ [10]
and the Berkeley Aligner [6]. The alignment outputs from the two
aligners are concatenated to estimate a unidirectional lexical trans-
lation probabilities (i.e., the probability of an English query word
given a non-English document word). Table 2 lists the size of the

1https://www.iarpa.gov/index.php/research-programs/material/material-baa
2http://opus.nlpl.eu/
3https://www.statmt.org/europarl/
4https://panlex.org/snapshot/
5https://dumps.wikimedia.org/
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Model MAP
Word-level NNLTM (Zbib et al.) 0.263
Word-level NNLTM replicate 0.246

+top50 0.252
+min_tf +stopwords 0.259

+label smoothing 0.266
Table 3: Results of different NNLTMmodel versions on Swahili Eval dataset used in Zbib et al.

parallel corpus used to generate the word alignments. Two transla-
tion tables are generated; unstemmed foreign word to unstemmed
English word and unstemmed foreign word to stemmed English
word.

NNLTM is first trained on unstemmed word alignments using
the same hyperparameters as the ones used in the Zbib et al. paper.
Based on their experiments, the source context window size is set
to 1. The model is trained for 20 epochs with a batch size of 512
using Adam optimizer and a learning rate of 0.001. The dropout
probability is set to 0.8 and the source vocabulary size is restricted
to 30,000 most frequent tokens. At the inference time, for a given
document term and the context surrounding it, we store the top-10
NNLTM’s output words and their contextualized probabilities.

3.3 Improvements to NNLTM
We experiment with changing several hyperparameters associated
with the NNLTM that might affect the retrieval performance. The
number of contextualized translations stored is increased from 10 to
50 (top 50). In addition to that, we remove samples from training that
have either English stopwords as the target or occur less than 5 times
(min_tf ). We also employ a regularization technique called label
smoothing [11] which avoids the model to get too overconfident
in its predictions. This technique involves smoothing the one-hot
target labels with a uniform distribution over the target vocabulary
size. These smoothed target labels are then used to train the model.
We use 0.1 as the value for label smoothing parameter. The effects
of these changes are further analyzed in Section 4.1

3.4 Retrieval model
For testing our combination approaches, we use a modified version
of PSQ-based HMM model [9] to perform retrieval. The foreign
state of the HMM model is replaced with the Probabilistic Term
Occurrence model (PTO) [16], as shown in Equation 3. PTO models
the relevance assumption for simple queries in the MATERIAL
collections, which are far more common than conceptual queries
in those collections. To do this requires finding relevant documents
that contain the translation of query terms at least once in the
document of interest. Assuming a query term 𝑞 consists of N terms
𝑡1 ....𝑡𝑁 , the document relevance probability is modeled as

𝑝 (𝑞 |𝑑𝑜𝑐) =
𝑁∏
𝑛=1

𝛼𝑃 (𝑡𝑛 |𝜃𝑒 ) + (1 − 𝛼) ©«1 −
∏

𝑓 ∈𝑑𝑜𝑐
(1 − 𝑝 (𝑡𝑛 |𝑓 )

ª®¬

(3)

where 𝜃𝑒 represents the HMM state which produces English words.
This is a back-off unigram language model which is estimated
from a large English corpus, Google’s One Billion Word collection

[1]. We use 𝛼 = 0.1. The query term counts 𝑡𝑛 in document 𝑑
are generated from the foreign words 𝑓 which are mapped to 𝑡𝑛
using the translation probabilities 𝑃 (𝑡𝑛 |𝑓 ). Further, PTO models
these counts between 0 (no translation occurred) to 1 (multiple
translation occurs). These counts can be computed by either using
the context-dependent or independent translation probabilities.
In an in-retrieval combined system, these counts generated from
context-dependent and independent translation probabilities are
combined together using the CombMNZ fusion as explained in
Section 2.3. Alternatively, these individual systems can be combined
together after the retrieval is performed.

4 RESULTS
We first describe the comparison of our basic and enhanced model
with the results achieved by Zbib et al. and then combine the en-
hanced NNLTM model with the PSQ approach using two described
combination methods.

4.1 NNLTMmodel enhancement
Results from all of our changes in the original NNLTM model are
summarized in the Table 3. For ease of comparison, we ran these
experiments (but not the system combination experiments below)
on the same setup as the one used in Zbib et al. (the IARPA Eval
set, with query sets Q1 and Q3) for Swahili.6 The Zbib et al. model
is compared with our replicated model which uses the same config-
uration as described in the paper. However, the models differ in the
training data described in Section 3.2, which, we believe, causes the
differences between the original and replicated model. Specifically,
we do not have access to the LORELEI [2] Swahili data used to
train the original model. However, the replicated model with the
described features (see Section 3.3) outperforms the original model,
and thus we believe that the model with the same training data
would outperform their original model as well.

4.2 System combination
The enhanced NNLTM model was further combined with the PSQ
non-contextual translations using both post-retrieval and in-retrieval
combination methods. The enhanced model achieving a Mean Av-
erage Precision (MAP) of 0.266 in the Table 3 on the Q1+Q3 query
sets is achieving a MAP of 0.272 on our Eval set with Q2+Q3 (i.e.,
the same documents, but some different queries). The results for
individual systems and their combinations are shown in Table 4.

As the stemmed PSQ system in most cases outperforms its un-
stemmed version, stemmed PSQ system is used in our experiments.
This stemmed PSQ system is outperforming the NNLTM model

6We only use Swahili results as it is the only Eval set used in [16].



EN→SW EN→SO EN→LT
Model Comb Val Eval Val Eval Val Eval
NNLTM - 0.362 0.272 0.277 0.165 0.442 0.304
PSQ - 0.368 0.252 0.267 0.147 0.534 0.359

PSQ+NNLTM
Post 0.373 0.282* 0.298 0.172* 0.540 0.381*
In 0.375 0.275* 0.294 0.169* 0.561* 0.393*

Table 4: Mean Average Precision of the NNLTM and PSQ models on the MATERIAL Val and Eval collections. Bold indicates
best results per column, * indicates statistically significant improvement over both single systems in the combination.

Two-tailed Wilcoxon signed rank test with p<0.01 is applied.

on Lithuanian, which is the language with the most available re-
sources among the tested languages. NNLTM is outperforming PSQ
on Swahili and Somali, except on the very small Swahili Val set. The
post-retrieval combination on each Eval collection significantly out-
performs the individual systems which are being combined, with
the largest differences achieved on the Lithuanian. In the case of the
Lithuanian and Swahili Val sets, in-retrieval combination further
improves these results. The strong performance of both combina-
tion methods confirms our assumption that the noise which can
emerge as the systems work with n-best possible translations can
be effectively surpassed by combining multiple such systems.

5 RELATEDWORK
Zhou et al. [19] provides an excellent survey on the translation
techniques mainly used to perform cross language retrieval. The
preferred approach is to translate queries to the document lan-
guage and perform monolingual retrieval. Early works [8] though
point to the evidence that it is often better to build hybrid system
that involve both query and document translation. Recent works
[14, 17, 18] involve neural approaches to creating document rep-
resentations used to perform retrieval. Türe et al. [13] combines
the query translations from two complementary systems, PSQ and
hierarchical phrase-based translation system. The choice of com-
bination is based on a linear interpolation of probabilities. Using
supervised learning methods to learn optimal set of combination
weights for each query separately has also proven to be effective
[12]. In contrast to these works, we focus on combining translation
learned from parallel text with a contextualized neural system using
well-known data fusion method in a low-resource language setting.

6 CONCLUSION AND FUTUREWORK
This paper proposes the combination of two complementary sources
of evidence: contextualized word translations produced by a neu-
ral lexical translation model and non-contextualized translation
generated by a statistical machine translation system. We demon-
strate the effectiveness of our approach through two combination
techniques: in-retrieval and post-retrieval, both of which produce
statistically significant improvements over the individual systems.
Using our approach, MAP gains of 4%, 4% and 9% are observed in
the Eval collections for three low-resource language collections,
Swahili, Somali and Lithuanian respectively. We also show that the
NNLTM can be tuned further to improve CLIR performance through
regularization technique and careful hyperparameter selection.

In the future, we plan to test both the NNLTM and the combina-
tion approach on CLEF bilingual ad-hoc retrieval collections. We

also plan to perform broad range of tuning experiments for the
NNLTM hyperparameters taking into account the OOV rate and
document terms coverage.
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